Sperner families satisfying additional conditions and their convex hulls
نویسندگان
چکیده
The profile of a hypergraph on n vertices is (f0 ..... fn) where fi denotes the number of /-element edges. The extreme points of the set of the profiles are determined for Sperner hyper-graphs satisfying some additional conditions. The results contain some old theorems of extremal set theory as particular cases.
منابع مشابه
Convex hulls of more-part Sperner families
The convex hulls of more-part Sperner families is defined and studied. Corollaries of the results are some well-known theorems on 2 or 3-part Sperner families. Some methods are presented giving new theorems.
متن کاملAll Maximum Size Two-Part Sperner Systems: In Short
Katona [6] and Kleitman [8] independently observed that the statement of the Sperner theorem remains unchanged if the conditions are relaxed in the following way. Let X = X1 ∪X2 be a partition of the underlying set X, |Xi| = ni, n1 + n2 = n (with n1 n2). We say that F is a two-part Sperner family if E, F ∈ F, E F ⇒ ∀i : (F \ E) ⊂ Xi. It was proved that the size of a two-part Sperner family cann...
متن کاملSmallest singular value of random matrices and geometry of random polytopes
We study behaviour of the smallest singular value of a rectangular random matrix, i.e., matrix whose entries are independent random variables satisfying some additional conditions. We prove a deviation inequality and show that such a matrix is a “good” isomorphism on its image. Then we obtain asymptotically sharp estimates for volumes and other geometric parameters of random polytopes (absolute...
متن کاملClassifier Conditions based on Convex Hulls
We introduce a novel representation of classifier conditions based on convex hulls. A classifier condition is represented by a sets of points in the problem space. These points identify a convex hull that delineates a convex region of the problem space. The condition matches all the problem instances inside such region. We apply XCSF with convex conditions to function approximation problems and...
متن کاملCompact families of Jordan curves and convex hulls in three dimensions
We prove that for certain families of semi-algebraic convex bodies in R3, the convex hull of n disjoint bodies has O(nλs(n)) features, where s is a constant depending on the family: λs(n) is the maximum length of order-s Davenport-Schinzel sequences with n letters. The argument is based on an apparently new idea of ‘compact families’ of convex bodies or discs, and of ‘crossing content’ and ‘foo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Graphs and Combinatorics
دوره 5 شماره
صفحات -
تاریخ انتشار 1989